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Conformational Analysis and CD Calculations of Methyl-Substituted
13-Tridecano-13-lactones
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Conformational models covering an energy range of 3 kcal/mol were calculated for (13S)-tetradecano-13-
lactone (3), (125)-12-methyltridecano-13-lactone (4), and (12S,13R)-12-methyltetradecano-13-lactone (8),
starting from a semiempirical Monte-Carlo search with AM1 parametrization, and subsequent optimization of
the 100 best conformers at the 6-31G*/B3LYP and then the TZVP/B3LYP level of density-functional theory. CD
Spectra for these models were calculated by the time-dependent DFT method with the same functional and
basis sets as for the ground-state calculations and Boltzmann weighting of the individual conformers. The good
correlation of the calculated and experimental spectra substantiates the interpretation of these conformational
models for the structure —odor correlation of musks. Furthermore, the application of the quadrant rule in the
estimation of the Cotton effect for macrolide conformers is critically discussed.

Introduction and Background. — Of the four different classes of musk odorants
[1][2], that of macrocycles is the only one occurring in nature, and the authentic warm,
sensual, and animalic odor of these compounds is much appreciated in perfumery.
Despite their comparatively high price, they gained vital interest in recent years
because of their good biodegradability [3]. Research has been focused on the
development of less expensive routes to macrocycles and on the discovery of new,
more-powerful musks to improve the price/performance ratio [1]. To smell musky, the
macrocyclic ring must contain 14— 18 members and a carbonyl, lactone, carbonate, or
imino function as the osmophore to allow orientation and binding of the molecule at
the receptor site. While gem-dimethyl substituents, or Et and higher alkyl groups
generally strongly diminish the odor of macrocyclic musks, Me and methylidene
substituents can intensify the musk odor [3]. Further elements in the molecular ‘Lego
set’ of macrocyclic musks are double bonds, and ether and thio-ether as well as carbonyl
groups (Fig. I). Especially these latter polar moieties need to be in well-defined
positions in relation to the osmophore to intensify the musk note. For thiamacrolides,
for instance, the odor threshold was significantly lowered when the S-atom was
separated from the C=0 group by four atoms in odd-membered rings (1,6-relation),
and by five atoms (1,7-relation) in even-membered rings [1]. The two best macrocyclic
musk odorants known to date are (R,Z)-Nirvanolide® (1; 0.05 ng/l air [4]) and (R,Z)-
muscenone (2; 0.027 ng/l air [S]; Fig. 1), both possessing an (R)-configured Me-group-
bearing C-atom and a (Z)-configured C=C bond as polar moiety.

For the design of new, even better-performing musks, we need to understand the
influence these structural elements have on the odor of macrocycles, i.e., we have to
understand how they influence the conformational preferences of these highly flexible

1) Present address: Max-Planck-Institut fiir Physik komplexer Systeme, Nothnitzer Strafie 38, D-01187 Dresden.
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Fig. 1. The structural parameters of musk odorants on the example of (R,Z)-Nirvanolide® (1), (R,Z)-muscenone
(2), the Me-substituted tridecano-13-lactones 3, 4, 5, and 8, as well as the constrained macrobicycles 6 and T

molecules. Most crucial in this respect are Me groups, which have a decisive influence
on odor character and intensity, especially in the smaller rings. Prominent examples are
the 14-membered methyl macrolides 3, 4 and 5, which occur in Galbanum [6] and
Angelica root oil [7]. While (135)-tetradecano-13-lactone (3) and its enantiomer ent-3
possess a pronounced cedarwood odor with only very slight musky character, both
enantiomers of 12-methyltridecano-13-lactone 4 and 5 smell musky, but differ
significantly in their odor character [8]: The (S)-configured 4 has an animalic musk
odor with camphoraceous aspects, the (R)-configured 5 a strong clean musk odor with
sandalwood aspects (Fig. 1).

Constraining the conformational flexibility of § by introduction of a stereochemi-
cally-defined CH, bridge between C(3), and C(9) or C(8) led to the relatively rigid
[7.5.1]- and [8.4.1]-bicycles 6 and 7 [9]. While the former one was fresh musky in smell
with anisic, fruity, and ambery side notes, the latter bicycle 7 possessed again a
cedarwood, ambery odor with animalic aspects. This was rationalized by a superposition
analysis on the X-ray structure of (4S,7R )-Galaxolide® [10], in which 6 overlapped well,
while the Me group of 7 protruded, so probably sterically hindered the interaction with
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the musk receptor. Likewise, if the Me group in 3 and ent-3 lies on the same trans-
configured edge of the macrocycle as the C=0O osmophore, it could hinder the
interaction with the musk receptor and cause similar cedarwood odor profiles. In 4 and
5, however, the Me substituent should rather be situated in a corner position or on a
different side than the oxycarbonyl group, imitating rather a larger ring than hindering
the interaction with the musk receptor. Introducing an w-Me group in 4 indeed shifts
the musk odor to a distinct cedarwood note [10]. But to substantiate these
considerations, reliable conformational models for these highly flexible molecules
are indispensable, i.e., models that could be experimentally verified to some extent. The
optical activity of the Me-substituted tridecano-13-lactones 3, 4, and 8 allows the
comparison of experimental and calculated CD spectra, even when solvent effects are
neglected. And since the Cotton effect depends critically on the molecular geometry,
the accuracy of the calculated conformational space can be tested relatively precisely.
In the following, we detail the conformational analysis and calculation of the CD
spectra of the Me-substituted tridecano-13-lactones 3, 4, and 8.

Results and Discussion. — Conformational Analysis. Starting from a local AM1
minimum, the conformational searches for 3, 4, and 8 was performed. This was carried
out by the Monte-Carlo method?), employing the semiempirical AM1 parameter-
ization [12] and the program Spartan [13]. The following eleven dihedral angles with
increments of + 120° have been included in the search (see Fig. I for numbering): 6, =
C(3)-C(2)—C(1)—0(14); 0, = C(4)—C(3)-C(2)—C(1); ;= C(5)-C(4)—C(3)-C(2);
0, =C(6)—C(5)—C(4)—C(3); 05 = C(7)—C(6) —C(5) - C(4); 05 = C(8) - C(7) - C(6) -
C(5); 6,=C(9)—C(8)—C(7)—C(6); 63=C(10)—C(9)—C(8)—C(7); 6= C(11)—C(10)—
C(9)—C(8); 6,,=C(12)—C(11)—C(10)—C(9); 6;; = C(13)—C(12)—-C(11)—C(10).

Within an energy range of 10 kcal/mol, the 100 most-stable conformations were
determined for each of the three molecules, and these were then optimized at the 6-
31G*/ B3LYP level of density-functional theory3). Conformations within an energy
range of 3 kcal/mol were further optimized [15] using a TZVP (Triple- Valence plus
Polarization) basis set [16] and the B3LYP exchange-correlation functional [17-19]
(Scheme). Some selected dihedral angles of the resulting structures of 3a—3r, 4a—4m,
and 8a—8m, and their relative energies are given in Tables 1 -3. The structures of the
most stable conformers 3a, 4a, and 8a are delineated in Fig. 2.

A recent conformational analysis of Me-substituted 14-membered macrocycles by
DNMR spectroscopy and molecular-mechanics conformer search showed the prefer-

2)  The Monte-Carlo method uses a standard simulated annealing algorithm (see http://pages.pomona.edu/
~wsteinmetz/chem164/confsearch_spartan.doc; http://www.ugcs.caltech.edu/info/gsl/sian_1.html [11], with
a temperature ramp of T=T;— AT(1 — I/l ,,,)’, where AT=T;—T;, T; and T; are the initial and final
temperatures, respectively, 7 is the current temperature; / and /,,,, are the current step number and the
maximal number of steps, respectively, which depend on the number of the flexible centers of the studied
molecule and the number of increments in the rotation. The new conformation is weighted via the
Boltzmann criteria (exp(— AE/(kT))). In our calculations, we have used 7;=5000 K, 7;=300 K, and I,,,, =
1089.

3)  The calculations have been carried out employing the GAUSSIAN 98 set of quantum-chemical routines
[14].
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Scheme. Flow Chart of the Generation of the Conformational Models for (13S)-Tetradecano-13-lactone (3),
(12S)-12-Methyltridecano-13-lactone (4), and (12S,13R )-12-Methyltetradecano-13-lactone (8)
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Fig. 2. The structures of the lowest-energy conformers 3a, 4a, and 8a of (13S)-tetradecano-13-lactone (3), (12S)-
12-methyltridecano-13-lactone (4), and (12S,13R )-12-methyltetradecano-13-lactone (8), respectively

ence for [3434] conformations as the lowest energy conformers, even in solution [20].
The conformations of macrocycles are designated according to the system of Dale [21],
indicating, in square brackets, the number of bonds in the trans-configured edges of the
macrocycles starting with the shortest trans-chain, and progressing in the direction of
the next shortest — the sum of the numbers in the square brackets thus equals the ring
size. Our calculations provided a [3434] conformation as the global energy minimum
for 3 (3a; Fig. 2) as well as several other [3434] conformations among the 18 lowest-
energy conformers (3b, 3¢, 3d, 3e, 3g, 3j, and 3r). At the same time, the energy gap to
the first [3344] conformer (3f) is just 0.64 kcal/mol. Surprisingly, in the case of the 12-
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Me-substituted tridecano-13-lactones 4 and 8, our calculations established [3344]
conformers as being energetically most stable (4a, see Fig. 2 and Table 2; 8a, see Fig. 2
and Table 3). The energy gap to the first [3434] conformer amounts to 1.04 kcal/mol
(4¢) and 0.28 kcal/mol (8b) in the case of 4 and 8, respectively.

TDDFT Calculations. The CD spectra of the conformers 3a—3r, 4a—4m, and 8a—
8m have been calculated by the time-dependent DFT (TDDFT) method [15][22] using
the same functional (B3LYP) and basis set (TZVP) as for the geometry optimization of
the ground states. The rotational strengths have been calculated using the origin-
independent dipole-velocity formulation [23]. The CD curves were obtained as a sum
of Gaussians, each of which is centered at the calculated wavelength of the
corresponding transition and multiplied with its rotational strength [24]. The Gaussians
were generated with the empirical formula I'=k- A5 for the half bandwidth I at
Aéga/e. The parameter k was set to 0.00375 [25], which yields a half bandwidth of ca.
10 nm at A~ 215 nm. The calculated CD spectra of the conformers were Boltzmann-
weighted and added up to obtain the computed overall CD spectra for 3, 4, and 8. The
calculated and the measured CD spectra are shown in Fig. 3.

Our TDDFT calculations predicted the energetically lowest transition in the range
between 210 and 220 nm in the CD spectrum for each conformer of 3, 4, and 8
(Tables 4—6). The transition occurs mainly from the n((HOMO) to the 7*(LUMO) of
the carboxylic group. This transition results in positive Cotton effects (1,.(3)=
2172 nm, A, (4) =215.8 nm, A.,.(8)=214.0 nm) in the calculated CD spectra of 3,
4, and 8, which correspond to the experimental ones [8][10] at 216, 216, and 214 nm,
respectively4). The highest occupied and lowest unoccupied Kohn—Sham orbitals
(KSOs) of the most stable conformers 3a, 4a, and 8a are displayed in Fig. 4. The next
calculated transition occurs at ca. 160 nm (not shown).

Application of the Quadrant Rule. Other than in the case of ketones, for which the
octant rule has been widely accepted [27], several empirical sector rules were proposed
for saturated lactones [28], taking more or less double-bond character of the O—CO
single-bond into account [29][30]. However, judging from the Kohn — Sham orbitals in
Fig. 4, this double-bond character is of very little importance, and lactones can be
treated as C=0O chromophores with quasi-C,, symmetry. For these chromophores, a
quadrant rule was proposed by Schellman et al. [31] to predict the sign of the n — 7*
Cotton effect at ca. 220 nm. To test the practical usefulness of this rule, we predicted the
Cotton effects of the different conformers also on the basis of the quadrant rule. In the
quadrant diagram of the most-stable conformer 3a (Fig. 5), the C-atoms C(1), C(2),
C(13), and, in principle, also C(12) lie in the nodal plane defined by the lactone group,
and, therefore, should not contribute to the overall Cotton effect of this conformer.
Likewise, C(7) lies quasi on the perpendicular nodal plane, and should not contribute
much either. C-Atoms C(3), C(4), C(5), and C(6) cancel with their positive
contribution by and large the negative contribution of the atoms C(8), C(9), C(10),

4)  We observed that TDDFT/B3LYP generally leads to a very good agreement with the experimental
wavelengths, much better than for instance, the BP86-functional (see for example the calculations on
calliactine [26]).
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Fig. 3. Comparison of the experimental CD spectra of 3 (a), 4 (b), and 8 (c) with the calculated ones at TZVP/
B3LYP level of TDDFT for3 (d), 4 (e),and 8 (f). Thin lines in d, e, and frepresent the individual spectra of the
different conformers multiplied with the corresponding Boltzmann tactor (cf. Tables 4-6).
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Table 4. The Electronic Configurations and Rotational Strengths for the Exited States of 3 (transition 63 — 64,
contribution typically >95%). 6 is the angle between the electric and the magnetic dipole moment?).

Conformer  Wavelength 6 Rotational Strength ~ Ae w,) Ae,©)
[nm] [degree] [ x107% erg-cm?] [l'mol™em™]  [%] [l-mol~'-cm™]

3a 218.8 84.5 3.10 1.37 16.9 0.23
3b 214.3 86.3 113 0.50 16.1 0.08
3c 217.1 86.1 2.03 0.90 15.3 0.14
3d 216.9 71.8 8.66 3.85 114 0.44
3e 2133 89.6 0.10 0.04 7.5 0.003
3f 215.2 84.0 1.82 0.81 5.7 0.05
3g 217.4 85.9 1.59 0.71 4.7 0.04
3h 214.9 104.4 —4.35 —1.94 1.7 —0.03
3i 2171 73.6 8.31 3.69 13 0.05
3j 216.2 782 3.83 1.71 12 0.02
3k 2159 101.6 3.72 1.66 0.8 0.01
3l 215.2 77.9 3.42 1.53 0.5 0.008
3m 216.0 88.7 —10.8 —4.82 0.32 —0.02
3n 216.2 89.2 —9.66 —4.30 0.31 —0.01
3o 216.5 1211 —11.27 —5.02 0.28 —0.01
3p 215.2 74.8 4.95 221 0.27 0.006
3q 2123 111.43 —6.89 —-3.10 0.25 —0.008
3r 215.0 105.1 —2.74 —-1.22 0.10 —0.001

) In cases where this angle is close to 90° the sign of the corresponding Cotton effect is very sensitive even to
small changes of the molecular structure. ®) w; = exp (—E;/RT)/ SV exp(—E;/RT) is the Boltzmann factor of
the i-th local minimum, where E; is the energy of this local minimum, and N is the number of local stationary
points. ©) Influence of the individual conformers to the average spectrum: The Ae,,, of the conformers
multiplied with the corresponding Boltzmann factor.

Table 5. The Electronic Configurations and Rotational Strengths for the Exited States of 4 (transition 63 — 64,
contribution typically > 95%)

Conformer  Wavelength 6 Rotational strength  Aeg w; Ag,
[nm] [degree] [ x107% erg-cm?] [l:molt-em™]  [%] [l mol~'-cm™]

4a 215.53 832 1.51 0.67 56.3 0.38
4b 212.69 89.5 0.15 0.07 13.6 0.01
4c 216.01 80.3 3.49 1.49 9.7 0.14
4d 216.21 80.2 291 1.30 52 0.07
4e 214.15 79.4 3.78 1.72 3.4 0.06
4f 217.64 70.1 5.83 2.58 2.7 0.07
4g 215.95 92.6 -1.20 —0.54 2.6 —0.01
4h 217.05 101.1 —5.37 -2.39 15 —0.04
4i 216.47 84.9 2.55 1.13 1.4 0.02
4j 217.17 75.0 8.16 3.64 13 0.05
4k 213.39 88.3 0.58 0.26 1.1 0.003
| 215.03 88.0 0.60 0.30 0.7 0.002

4m 215.95 89.1 0.33 0.14 0.4 0.0005
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Table 6. The Electronic Configurations and Rotational Strengths for the Exited States of 8 (transition 67 — 68,
contribution typically >95%)

Conformer  Wavelength 6 Rotational strength ~ Ae w; Ae,
[nm] [degree] [ x107% erg-cm?] [l:molt-em™!]  [%] [l mol~'-cm™]

8a 214.24 74.91 4.77 213 44.9 0.96
8b 216.98 91.52 —0.67 —0.30 28.0 —0.08
8c 214.06 76.22 4.05 1.81 8.6 0.16
8d 214.58 80.09 291 1.30 8.4 0.11
8e 21721 81.30 3.29 1.47 2.7 0.04
8t 215.25 79.83 345 1.54 2.0 0.03
8g 215.11 96.31 —2.04 -091 1.6 —0.01
8h 21791 96.04 —3.78 —1.68 12 —0.02
8i 213.82 72.92 5.74 2.57 1.1 0.03
8j 214.05 85.69 121 0.54 0.5 0.003
8k 218.18 86.15 —4.75 -211 0.4 —0.008
8l 215.95 97.41 -291 —1.30 0.3 —0.004
8m 217.09 95.08 —2.58 - 115 0.3 —0.003

and C(11) to the Cotton effect. The pseudoequatorial Me group, however, lies in a
positive quadrant much closer to the C=0 group than all other C-atoms do, and it,
therefore, acts as a strong perturbator. Consequently, a positive Cotton effect is
predicted in accordance with the calculated one (Ae =+ 1.37 I/mol - cm). The situation
is similar in the case of the conformers 3b-3g, 3i—3l, and 3p. A negative Cotton effect
was predicted for the energetically higher conformers 3m-3o0, and 3r (RE > 2 kcal/
mol; see Table 2), which is also in accordance with the calculations. However, for
conformers 3h and 3q a positive Cotton effect was predicted, while calculated values of
the rotational strengths have negative signs (3h: —4.35 x 10~% erg - cm?; 3q: — 6.89 x
10~ erg - cm? ). On the whole, the quadrant rule predicts the calculated Cotton effects
quite well in the case of (135)-tetradecano-13-lactone (3), but, for the conformers of
(1285)-12-methyltridecano-13-lactone (4; Fig. 6) and (12S,13R)-12-methyltetradecano-
13-lactone (8; Fig. 7), the correspondence is less good. Discrepancies were observed
for 4a, 4f 4j, and 4k, as well as for 8b, 8g, 8h, 8i, 8j, and 8k, respectively. These call the
general applicability of the quadrant rule into question, though, for the majority of
conformers, the Cotton effect was predicted correctly. In the application of the quadrant
rule, attention has to be paid to trans-chains that are in immediate proximity oriented
perpendicular to a nodal plane, such as in conformers 4c, 4d, and 4g. There, they surpass
the Me substituent in importance, and decisively influence the overall Cotton effect.
Though, in general, the conformations of the macrocyclic ring of 8 resemble closer
those of 4 than those of 3, so are apparently more influenced by Me—C(12), the
positions of Me—C(13) in the conformers of 8 are reminiscent to those of 3, which
could account for similar odor characteristics.

Interpretation and Conclusions. — Conformational models for the Me-substituted
tridecano-13-lactones 3, 4 and 8 were calculated and examined by calculation and
correlation of the respective CD spectra with experimental data. In all conformers
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f

B3th KSO, n ( ~7.36 V) B4th KSO, * (0.07 eV)
(HOMO) (LUMO)

63th KSO, n (-7.50 &V) B4th KSO, 7* (0.07 eV)
(HOMO) (LUMO)

8a 67th KSO, n (-7.45 eV) 68th KSO, 7* (0.12 eV)
(HOMO) (LUMO)

Fig. 4. Kohn-Sham orbitals of the lowest-energy conformers 3a (a), 4a (b), and 8a (c)

considered, Me—C(13) of 3 and 8 is in pseudoequatorial conformation situated on the
trans-edge that bears the C=0 osmophore. This very well could hinder the interaction
with the musk receptor, and would explain the cedarwood odor profiles of 3 and 8.
With the exception of conformers 4i and 4m, the Me substituent of 4 is, however,
situated on a different side than the O—CO group. This should imitate a larger ring
rather than hinder the interaction with the musk receptor. The good agreement of
experimental and calculated spectra substantiates the validity of these models for the
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3q: +/-° 3r: -4-F

Fig. 5. Quadrant diagrams of the conformers of (13S)-tetradecano-13-lactone (3). The indices p and c indicate
the predicted and calculated signs of the Cotton effect, respectively.
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ak: - 4° al: +7 +° am: +7 +°

Fig. 6. Quadrant diagrams of the conformers of (12S)-12-methyltridecano-13-lactone (4). The indices p and ¢
indicate the predicted and calculated signs of the Cotton effect, respectively.

interpretation of structure —odor correlations of these highly flexible molecules — and
reliable conformational models are essential for molecular modeling. Caution is
advisable in the application of the quadrant rule for estimating the Cotton effect for
macrolides, although, for the majority of conformers, it predicts the sign correctly.

Proofreading of the manuscript by Dr. Markus Gautschi, Mr. John Anthony M‘Stea, and Ms. Fanny Grau is
acknowledged with gratitude.
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8k: +7 -° o A 8m: -1 -°

Fig. 7. Quadrant diagrams of the conformers of (12S,13R )-12-methyltetradecano-13-lactone (8). The indices p
and c indicate the predicted and calculated signs of the Cotton effect, respectively.
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